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MEGAVOLT, MULTI-KILOAMP

KaBAND GYROTRON OSCILLATOR EXPERIMENT

I. Introduction

Gyrotron oscillators have proved to be efficient sources of very high-power radiation in

the microwave and millimeter wave regimes. Conventional gyrotrons use thermionic

cathodes, with typical operating currents of ;550 A at voltages of 5100 keV, and have

demonstrated hundreds of kW of average power at efficiencies approaching 50%. However,

some future applications of millimeter-wave radiation, such as radars and high energy linear

electron (and positron) accelerators, may require substantially higher peak power levels than

have been produced using conventional thermionic microwave tube technologies. The pursuit

of higher microwave powers inevitably requires the application of higher beam powers,

implying operation at higher currents and/or voltages. Gyrotron scaling to high current, high

voltage operation is relatively favorable, I and a number of high voltage (>250 kV) gyrotron

experiments have been reported in recent years that take advantage of the substantially higher

currents and voltages available for short pulses (typically, <100 nsec) from high voltage

pulseline accelerators driving plasma-induced field emission cathodes. Among these are a set

of experiments from the P.N. Lebedev Physics Institute of the Soviet Union that demonstrated

22 MW at 40 GHz in a linearly-polarized (i.e., non-rotating) TE1 3 mode with 5% efficiency,

using a 350 keV electron beam. 2 Studies of gyrotrons driven by pulseline accelerators or

Marx generators have also been carried out at the University of Michigan3 and at the

University of Strathclyde in the United Kingdom.4
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In 1984, a program was initiated at the Naval Research Laboratory to investigate very

high pow..er gyrotron oscillators driven by intense relativistic electron beams. These

experiments were designed to operate in Ka-band, with the principal interest at 35 GHz. The

early experiments were carried out on a compact Febetron pulser capable of producing a 600

kV, 6 kA, 55 nsec pulse into a 100 Q matched load.

A key requirement tu intense beam gyrotrons, unlike most other high power

microwave devices (rI,'en by ini-nse relativistic electron beams, is to produce an electron

beam with a large amount of momentum transverse to the applied axial magnetic field prior to

injection into the interaction region. The first series of experiments attempted to produce the

required beam x, where ot is the ratio of transverse to parallel momentum, by emitting

electrons across magnetic field lines at the cathode to produce some initial nonzero value of (x,

and then adiabatically compressing the beam into the gyrotron cavity to increase aX while

positioning the beam to couple strongly to the desired waveguide mode. These experiments

operated at approximately 350 kV and 800 A, and produced approximately 20 MW of output

power at 35 GHz with 8% efficiency in a "whispering-gallery" TE6 2 mode. 5

When this approach was found to lack flexibility, a new approach was implemented, in

which the diode was designed to emit primarily along the direction of the axial magnetic field,

i.e. to produce a very low initial beam ax, and the a was then sharply increased by transit

through a localized nonadiabatic dip in the axial field, produced by a "pump" magnet, before

being adiabatically compressed into the gyrotron cavity. This allowed the use of a very

simple diode geomctiy, and proiddcd i separate cxpcrinxntal control for bLam a that gre.ly

increased the experimental flexibility.
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For this second series of experiments, the Febetron pulser was operated at its full rated

charge voltage and mismatched upward at the diode to produce voltages higher than 600 kV

(up to 900 kV) at lower currents. Due to the high impedance of the pulser, it was impossible

to employ relatively low impedance diodes, such as diodes with beam-scraper anodes, without

substantially reducing the operating voltages. The experiments were therefore carried out in a

foilless geometry employing a magnetic-field-immersed, cylindrical graphite cathode with a

sharpened edge, in which the cylindrical vacuum vessel served as the anode. In this

geometry, the diode produces a beam current determined by the space-charge limited flow of

the annular beam within the cylindrical vacuum enclosure in the vicinity of the cathode. In

general, this was more current than could be effectively employed in the experiment, and the

use of a "pump" magnet to increase the average beam c to a level sufficient to drive the

gyrotron interaction invariably resulted in the loss of a sizable fraction of the beam current.

Current loss occurred due to electron mirroring during the adiabatic compression stage, due in

part to the effects of beam space charge on the electron beam kinetic energy, and in part to the

effects of pitch-angle spread in the beam. It was not clear exactly where the reflexing

electrons were collected, or whether they caused a space-charge build-up that effected the

performance of the diode.

Based on single particle simulations of the effects of the pump magnet on electrons

entering with a small initial value of a and random gyrophase, it is apparent that the pump

magnet has the effect of greatly magnifying any initial spread in pitch angle. Fortunately,

gyrotron oscillators are not very sensitive to such pitch angle spreads. However, one result of

a large electron beam pitch angle spread is to limit the average beam (x achievable by this
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technique, since as the strength of the pump magnet is increased, the highest a portion of the

particle distribution function will be reflected during the subsequent adiabatic compression

phase. Optimum high power operation generally occurred with pump strengths resulting in

the loss of hall or more of the total beam current between the diode and the gyrotron cavity.

In addition, the diode voltage waveform was highly transient, with no true steady-state

conditions of current and voltage obtainable anywhere within the pulse.

The second series of experiments was carried out in both whispering-gallery TEm2

modes and linearly-polarized TEIn modes. 6 ,7 Results included a peak power of 100 MW at

35 GHz at 8% efficiency in a rotating TE6 2 mode, a peak power of 35 MW at 35 GHz in a

linearly-polarized TE1 3 mode through use of a slotted gyrotron cavity. The gyrotron signal

frequency could be step-tuned over the range 28 to 49 GHz in a sequence of TEm 2 modes by

variation of the axial magnetic field. Results were in general agreement with the predictions

of steady-state gyrotron theory, with theoretical values of power and efficiency typically being

larger than experimental values by about a factor of two. However, due to the nonideal

voltage waveform provided by the Febetron pulser, the typical microwave pulse length was

only 15 nsec.

In order to extend these experiments to higher microwave powers and longer pulses, as

well as to gain some flexibility in the diode design in order to permit the production of a

better quality electron beam, these experiments were moved to the VEBA pulseline

accelerator, which can operate at voltages exceeding 1.5 MV and has a 20 0) output

impedance and a 55 nsec FWHM pulse, of which approximately 40 nsec is relatively flat

(±3-5%). These new experiments initially employed a very similar experimental setup to that
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utilized previously in the Febetron experiments, except that the Q=250, TE6 2 cavity of the

100 MW experiments was replaced by a slightly shorter cavity with a cold-cavity Q of 180.

However, the best results have been achieved by replacing the foilless diode geometry with a

beam scraper diode. By varying the cathode-anode gap, the new diode geometry has

permitted control of the total current injected into the drift tube, and in addition, the more

planar cathode-anode geometry is believed to produce a lower spread in the initial beam pitch

angle, with the potential to produce a higher average value of a in the gyrotron cavity.

Furthermore, in the new geometry, any reflexing electrons are likely to be collected on the

downstream side of the beam scraper anode, thus eliminating a possible space-charge build-up

problem present in the foilless experiment.

As a result of the higher beam power and improved beam quality, the output power has

been increased to approximately 250 MW at 35 GHz in a TE6 2 mode with an efficiency of

approximately 10%.

II. Experimental Setup

The 1.5 MeV VEBA pulseline accelerator with 20 K2 output impedance and 55 nsec

voltage pulse was used to generate a multi-kiloamp annular electron beam by explosive

plasma formation from a graphite cathode. Two diode geometries were employed. In the

first, the electron beam was produced by emission from the sharpened edge of a cylindrical

graphite anode in a simple foilless diode geometry. In the second, a more conventional planar

anode-cathode gap was used, in which emission takes place from the rounded edge of a

hollow cathode, and a small fraction of the total current is extracted from the diode through an
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annular slot in the graphite anode. In either case, the beam is created in a uniform axial field

provided by the main solenoidal magnet.

Figure 1 illustrates the overall experimental setup employing the second of these diode

geometries. The initial transverse momentum is low, because the emission is predominantly

along the direction of the applied magnetic field. Downstream, the transverse momentum is

induced by transit through a localized depression in the axial field, which is produced by the

"pump" magnet. Finally, the beam is adiabatically compressed to its final radius by the cavity

solenoid. A Rogowski coil positioned between the pump magnet and the gyrotron cavity

measures the net current into the gyrotron. In order to achieve separate adjustment of the

electron transverse momenmum, the magnetic compression ratio, and the final magnetic field

in the gyrotron cavity, each of the three magnets (i.e., the pump magnet, the cavity solenoid,

and the main magnet) is powered by a separate capacitor bank discharge. 6 By a proper

selection of pump magnet strength and compression ratio, the beam diameter can be adjusted

to couple to the desired TE 62 mode in the cavity while the electron velocity pitch ratio t is

increased to a value near unity. The cavity itself is cylindrically symmetric with a diameter of

3.2 cm and has a calculated cold-cavity Q of 180 for the TE6 2 mode. Beyond the cavity there

is a 50 output taper transition to a 120 cm long drift tube with diameter of 14 cm. Finally, a

one-meter-long output horn is terminated with a 32-cm-diam. output window.

In the foilless diode configuration, used in the earlier experiments, the beam current is

space-charge limited with a typical value of 10 kA; however, under the usual operating

conditions that maximize gyrotron microwave emission as a function of the strength of the

pump magnet, only one-third of this current actually reaches the gyrotron cavity. Due to
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emission from the edge of the cathode, the beam from this foilless diode possesses a relatively

large spread in pitch angle, which is greatly magnified by the pump magnet. This results in a

large uncontrolled loss of half or more of the beam current during the adiabatic compression,

as measured by the Rogowski coil, thereby limiting the achievable pitch ratio and potentially

causing space charge problems due to the reflexing electrons.

To improve the beam quality, the foilless diode was replaced by an apertured diode

configuration, in which a hollow ring-like cathode is placed from I to 2.2 cm from an anode

plate with an annulus cut in it to match the cathode ring. The mean diameter of the annulus

was 3.34 cm, and its radial extent was 1.5 mm. The anode functions in part as an emittance

filter, since it scrapes off the inner and outer edges of the annular electron beam produced by

the cathode, and in part as a control grid, since changes in the cathode-anode gap are a reliable

means to control the beam current, which is space-charge limited. A consequence of the use

of an apertured anode, rather than a foilless geometry, is the emission of a large amount of

cathode current (25-35 kA), with roughly 90% being scraped off before leaving the diode.

However, the more planar emission geometry and the controlled beam scraping provides the

beam with a lower initial (x and a smaller velocity spread before it enters the pump magnet

and beam compression regions. As a result, the beam quality is improved and the current loss

from the diode to the cavity can be reduced to approximately 10 to 15% under typical

conditions of gyrotron operation. This small fraction of reflected electrons is most likely to be

collected on the downstream side of the anode scraper plate, thereby preventing a build-up of

space charge anywhere in the system.
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The microwave measurement system consists of two separate detection channels, each

composed of calibrated "in-band" WR-28 components, including filters, attenuators and

directional couplers, and beginning with a small microwave aperture antenna positioned

within I cm of the output window. One aperture is maintained at a fixed position on the

output window, while the second is scanned. A band-pass filter limits the detected signal to a

narrow frequency band (1.6 GHz FWHM) centered at 35 GHz. These diagnostics as well as

the overall experimental setup are described in greater detail in Ref. 6. The changes affecting

the present work are in the diode region, the cavity Q, and the currents, voltages, and

magnetic fields employed in the experiment.

III. Experimental Results and Discussion

The waveforms for the diode voltage, diode current, cavity current, and 35 GHz

microwave pulses for a "typical" shot are shown in Fig. 2. The improved voltage waveform

and beam quality, compared to that described in Ref. 6, have generally permitted high power

microwave pulses with a duration of up to 40 nsec, nearly matching the duration of the flat

portion of the high voltage pulse applied to the diode. However, the microwave pulse is

subject to large shot-to-shot variation in amplitude and pulse shape. A set of measurements

were conducted as a function of beam energy, magnetic field, magnetic compression ratio,

and pump field amplitude, in order to find the optimum operating parameters.

Figure 3 shows a scan of the output mode of the device as a function of radius in both

I Erl 2 and I E01 2 with a cavity magnetic field of B0=32 kG, a current of 2.5 kA, and a peak

diode voltage of 1.2 MV. The estimated experimental uncertainties are ±1.5 kG on the
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magnetic field, ±0. 1 kA on the instantaneous current measured by the Rogowski coil, and

+0.1 MV on the diode voltage, including the effect of voltage ripple during the voltage

flat-top. (The net current will be lower if current interception takes place between the

Rogowski coil and the gyrotron cavity. Fluorescent screen data taken subsequent to the

microwave measurements suggests that up to 20% of the current may have been intercepted

under these experimental conditions.) The peak beam kinetic energy should be corrected

downward by approximately 50 keV because of space charge depression, assuming an

average beam cx of 1.

The normalized beam radius (i.e., the ratio of the beam guiding center radius rb to the

cavity wall radius rw) for this scan was approximately 0.725. However, there was some

spread in the electron guiding centers due to beam thickness (reflecting the 1.5 mm width of

the anode annulus) and finite decentering of the beam in the gyrotron cavity. This radius is

close to optimum for coupling to the circularly-polarized TE6 2 mode counterrotating to the

sense of electron gyration in the axial magnetic field. However, in the vicinity of 35 GHz, the

beam will also couple to the TEl 0 ,1 and TE1 4 modes, and more weakly to the TM 2 3 and

TM04 modes, The general shape of the measurcd profile in Fig. 3 fits reasonably well to the

TE 6 2 mode for both the radial and azimuthal polarizations of the rf electric field, and is

similar to that of Ref. 6. The peaks at small values of the radii may be due to parasitic

excitation of the TM0 4 mode. Mode purity at the output window may also be reduced by

mode conversion in the 5' output taper and horn. For instance, mode conversion to the TE6 1

mode might explain the higher than expected peak in I Erl 2 near the wall. A scan under
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similar experimental conditions with the foilless diode with its resulting poorer quality beam

revealed a higher content of undesired modes.

For the data of Fig. 3, the measured mode pattern can be used to calculate the total

gyrotron power by integrating over the output window, and correcting for the measured losses

in the detection system. This procednre has been described in detail elsewhere. 6 The power

estimate, which is based on the average of several shots per position in the scan, is 160 MW.

Subsequent data taken at a fixed position has shown the total equivalent output power to reach

a single-shot peak value of 275 MW, with 250 MW being measured on several occasions.

The single shot efficiencies, based on the Rogowski coil measurements of beam current,

varied from 9 to 14%. Based on error bars in the averaging process and in the calibration of

the various multiplicative factors, the overall uncertainty of the power values is estimated to

be less than 3 dB.

Figure 4 shows starting current and output isopower curves for the gyrotron interaction

with the counterrotating TE 6 2 mode, calculated from a steady-state model 8 for B0=32 kG.

The beam current is assumed to scale as V1 .5 with a maximum value of 2.5 kA at 1.15 MV,

and the beam cx is assumed to scale linearly with V, with a maximum value of cX=1 at 1. 15

MV. The starting current and isopower curves are calculated assuming a half-sinusoidal

rf-field profile along the cavity axis with a length of 3.5 cm and a hollow beam with a radius,

normalized to the cavity wall radius, of 0.725. The dotted line models the behavior of the

electron beam current during the rise of the voltage waveform. The effect of increasing

voltage on the coupling to this mode may be inferred from this figure. As the voltage (and

current) rise to their flat-top values, the interaction will begin at the left of the figure, where
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the beam line crosses the starting current line labelled lthr , and then progressively tune to

higher powers as the voltage and current continue to rise. The line ends at 2.5 kA and 1.15

MeV, and corresponds to predicted operation outside of the starting current curve, i.e. in the

"hard excitation" regime, with a peak power of approximately 400 MW. Aside from the peak

power predictions, this simulation is in reasonable agreement with the experimental

observations.

In order to better understand the time-dependent nature of the gyrotron operation, as

illustrated in Fig. 2, we have carried out a set of slow-time-scale single-mode time-dependent

simulations of gyrotron operation for the approximate experimental conditions corresponding

to the measurements shown in Fig. 3. Figure 5 shows a series of time-dependent simulations

of the gyrotron operation, 9 employing a simulated VEBA voltage waveform that models the

leading edge of the pulse, the duration of the approximately flat portion of the voltage

waveform, and a "typical" short-duration voltage "spike" during the "flat-top." These

simulations employ the same sinusoidal rf-field profile used for the steady-state simulations,

and assume the same dependence of current and beam ox on voltage. For the four runs shown,

only the magnetic field was varied. At the lowest magnetic field, B0 =31 kG (Fig. 5a), the

microwave signal occurs only during the rise and fall of the voltage waveform, and there is no

interaction at the voltage flat-top. The next case (Fig. 5b), for B0 =32 kG, corresponds to the

steady-state simulations of Fig. 4. In this case, the microwave signal grows substantially

during the leading edge of the voltage pulse, and persists up to the voltage flat-top. Figure 5b

demonstrates that the full voltage of the flat-top, corresponding to the upper end point of the

beam line in Fig. 4, results in a highly detuned state of the gyrotron interaction, corresponding

11



to "hard excitation." This is evident because the short-duration voltage spike modeled at

approximately 45 nsec detunes the interaction further, causing the output power to fall off

dramatically, and the power does not begin to recover until the voltage falls below the flat-top

voltage. This case agrees well with the steady-state simulation of Fig. 4, and the peak power

predicted by this simulation exceeds the best experimental value by approximately a factor of

two, as in Fig. 4. At B0 =33 kG (Fig. 5c), the voltage flat-top no longer corresponds to hard

excitation, since the microwave signal falls off dL-ing the voltage spike, but then recovers

during the remainder of the flat-top. Finally, at B(,=34 kG (Fig. 5d), the simulation shows the

microwave power to follow the voltage signal for the duration of its flat portion including the

voltage spike, and the power actually increases during the voltage spike.

For the assumed voltage waveform, the best agreement between the experimental

microwave signals and the predictions of the single-mode time-dependent code, as a function

of magnetic field, occurs at the experimental value of B0 =32 kG. However, the experimental

values have error bars, as noted previously. In addition, the predictions of the time-dependent

simulation depend in part on the exact shape of the axial rf-field profile assumed for the

interaction, and small variations in the assumed length of the sinusoidal profile, or in

substituting an approximately equivalent gaussian profile for the sinusoid, will change the

required values of the externally-applied axial magnetic field by one to two kG. The

time-dependent simulations of Fig. 5 suggest that the microwave signal should last longer and

reach higher power as the magnetic field is increased beyond the best experimental value of

B0 =32 kG. In general, this is not observed in the laboratory. A possible explanation for this

experimental observation lies in the area of mode competition. Specifically, as the magnetic
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field is increased, it becomes increasingly probable that a higher frequency mode will start

oscillation during the rise of the voltage waveform, and will interfere with the start-up of the

TE 6 2 mode at 35 GHz. The most likely competing mode in this situation is the

counterrotating TE7 2 mode. Time-dependent simulations carried out for the TE7 2 mode

indicate that it should begin to compete with the start-up of the TE62 mode at approximately

34 kG. A thorough analysis of the effects of mode competition and other transient

phenomena on the operation of a high voltage gyrotron would require the use of true

multimode simulations, such as the fast-time-scale particle-in-cell simulations carried out by

A.T. Lin et al. for the parameters of Ref. 6.10

In summary, a 35 GHz gyrotron oscillator has successfully operated at voltages

exceeding 1 MeV and currents of several kiloamps to produce peak power levels of up to a

quarter of a GW in a TE 6 2 mode at peak efficiencies exceeding 10%. Its interaction

efficiency has been improved .7ompared to earlier experiments by the use of an apertured

diode, in place of the foilless diode configuration used previously, which has allowed better

control of the current injected into the gyrotron and better beam quality. By comparison, an

earlier TE 6 2 experiment operating at approximately 800 keV and 1.6 kA at the same

frequency in the same TE62 mode achieved 100 MW at 8% efficiency. Overall experimental

operation is in general agreement with the predictions of theory, with the best experimental

powers within a factor of two of the theoretical predictions.
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assuming rblr W=0. 725 , (x -V with X=lI at 1. 15 MeV, and I -V 1 .5 with I=2.5 kA at

1. 15 MeV. Runs with four values of BO are shown: (a) 31 kG, (b) 32 kG, (c) 33

kG, and (d) 34 kG.
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